Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cardiovasc Res ; 119(9): 1825-1841, 2023 08 07.
Artigo em Inglês | MEDLINE | ID: mdl-37225143

RESUMO

AIMS: The metabolic failure of macrophages to adequately process lipid is central to the aetiology of atherosclerosis. Here, we examine the role of macrophage angiotensin-converting enzyme (ACE) in a mouse model of PCSK9-induced atherosclerosis. METHODS AND RESULTS: Atherosclerosis in mice was induced with AAV-PCSK9 and a high-fat diet. Animals with increased macrophage ACE (ACE 10/10 mice) have a marked reduction in atherosclerosis vs. WT mice. Macrophages from both the aorta and peritoneum of ACE 10/10 express increased PPARα and have a profoundly altered phenotype to process lipids characterized by higher levels of the surface scavenger receptor CD36, increased uptake of lipid, increased capacity to transport long chain fatty acids into mitochondria, higher oxidative metabolism and lipid ß-oxidation as determined using 13C isotope tracing, increased cell ATP, increased capacity for efferocytosis, increased concentrations of the lipid transporters ABCA1 and ABCG1, and increased cholesterol efflux. These effects are mostly independent of angiotensin II. Human THP-1 cells, when modified to express more ACE, increase expression of PPARα, increase cell ATP and acetyl-CoA, and increase cell efferocytosis. CONCLUSION: Increased macrophage ACE expression enhances macrophage lipid metabolism, cholesterol efflux, efferocytosis, and it reduces atherosclerosis. This has implications for the treatment of cardiovascular disease with angiotensin II receptor antagonists vs. ACE inhibitors.


Assuntos
Aterosclerose , Pró-Proteína Convertase 9 , Humanos , Animais , Camundongos , Pró-Proteína Convertase 9/metabolismo , PPAR alfa/genética , PPAR alfa/metabolismo , Metabolismo dos Lipídeos , Colesterol/metabolismo , Macrófagos/metabolismo , Aterosclerose/genética , Aterosclerose/prevenção & controle , Angiotensinas/metabolismo , Trifosfato de Adenosina/metabolismo , Transportador 1 de Cassete de Ligação de ATP/genética , Transportador 1 de Cassete de Ligação de ATP/metabolismo
2.
Int J Mol Sci ; 23(8)2022 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-35457034

RESUMO

Localization of tumors during laparoscopic surgery is generally performed by locally injecting India ink into the submucosal layer of the gastrointestinal tract using endoscopy. However, the location of the tumor is obscured because of the black-stained surgical field and the blurring caused by India ink. To solve this problem, in this study, we developed a tissue-adhesive porphyrin with polycations consisting of quaternary ammonium salt groups. To evaluate the ability of tissue-adhesive porphyrin in vivo, low-molecular-weight hematoporphyrin and tissue-adhesive porphyrin were injected into the anterior wall of the exposed stomach in rats. Local injection of low-molecular-weight hematoporphyrin into the anterior wall of the stomach was not visible even after 1 day because of its rapid diffusion. In contrast, the red fluorescence of the tissue-adhesive porphyrin was visible even after 7 days due to the electrostatic interactions between the positively-charged moieties of the polycation in the tissue-adhesive porphyrin and the negatively-charged molecules in the tissue. In addition, intraperitoneal injection of tissue-adhesive porphyrin in rats did not cause adverse effects such as weight loss, hepatic or renal dysfunction, or organ adhesion in the abdominal cavity. These results indicate that tissue-adhesive porphyrin is a promising fluorescent tissue-marking agent.


Assuntos
Porfirinas , Adesivos Teciduais , Animais , Corantes , Hematoporfirinas , Polieletrólitos , Compostos de Amônio Quaternário , Ratos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...